10.6 多级DWT,IDWT和SWT
10.6.1 多级离散小波变换分解
[]:import pywt
x = [3, 7, 1, 1, -2, 5, 4, 6]
db1 = pywt.Wavelet('db1')
cA3, cD3, cD2, cD1 = pywt.wavedec(x, db1)
print(cA3)
print(cD3)
print(cD2)
print(cD1)
10.6.2 多级离散小波变换重构
[]:coeffs = pywt.wavedec(x, db1)
print(pywt.waverec(coeffs, db1))
[]:[ 3. 7. 1. 1. -2. 5. 4. 6.]
10.6.3 多级离散小波变换分解
[]:x = [3, 7, 1, 3, -2, 6, 4, 6]
(cA2, cD2), (cA1, cD1) = pywt.swt(x, db1, level=2)
print(cA1)
print(cD1)
print(cA2)
print(cD2)
[]:[7.07106781 5.65685425 2.82842712 0.70710678 2.82842712 7.07106781
7.07106781 6.36396103]
[-2.82842712 4.24264069 -1.41421356 3.53553391 -5.65685425 1.41421356
-1.41421356 2.12132034]
[ 7. 4.5 4. 5.5 7. 9.5 10. 8.5]
[ 3. 3.5 0. -4.5 -3. 0.5 0. 0.5]
[]:[(cA2, cD2)] = pywt.swt(cA1, db1, level=1, start_level=1)
print(cA2)
print(cD2)
[]:[ 7. 4.5 4. 5.5 7. 9.5 10. 8.5]
[ 3. 3.5 0. -4.5 -3. 0.5 0. 0.5]
[]:coeffs = pywt.swt(x, db1)
len(coeffs), pywt.swt_max_level(len(x))
[]:(3, 3)
Last updated
Was this helpful?