C.1 Jupyter内核概述
本书主要使用Jupyter Lab完成数据科学实践。您可能一直将Jupyter Lab当作一个可以夹杂着Markdown语句的Python集成开发环境。但实际上,Juoyter能做的远远比想象中要多。只需要为Jupyter安装特定的核心,Jupyter就具备了处理其他计算机语言的能力。同理,我们之所以能够在Jupyter Lab里边写Python3的代码,也是因为我们从一开始就安装了Python3的Jupyter核心,您可能没有主动这样做,那是因为我们在安装Jupyter Lab时,程序自动执行了这些操作。
表C.1 对常用的Jupyter核心进行了简单介绍。
表C.1 常用的Jupyter核心
名称
Jupyter/Ipython版本
语言版本
第三方依赖
注释
Jupyter 4.0
Fortran 2008/2015
Jupyter 4.0
python >= 3.3
SAS 9.4 or higher
Jupyter 4.0
python 2.7, >= 3.3
pyzmq
julia >= 0.3
ruby >= 2.1
nodejs >= 0.10
Jupyter 4.0
C# 4.0+
scriptcs
IPython 3.0
R 3.2
rzmq
Jupyter >= 4, JupyterLab
Go >= 1.8
ZeroMQ (4.x)
Jupyter
Octave
MetaKernel
Jupyter
Matlab
pymatbridge
MetaKernel
IPython >= 3
bash
Wrapper
IPython >= 3
zsh >= 5.3
IPython >= 3
Mac Os X
Paro 64 bits native kernel, zeromq
IPython >= 3
Windows
Wrapper, Based on Bash Kernel
IPython >= 3
redis
Wrapper
io.js
Jupyter
Babel
IPython >= 2
multiple
Mathics
Wolfram Mathematica
Wolfram Mathematica(R), Metakernel
MetaKernel
Lua
Jupyter
Scala, Python, R
Spark >= 1.5
Jupyter>=4.0
Jython>=2.7.0
Java>=7
Java based JSR223 compliant
Jupyter
C
gcc
Jupyter 4
ARMv6 THUMB
基于 ARM Cortex M0+ CPU
Jupyter 4
Python >=3.4
Support kernels for bash, python2/3, matlab/octabe, javascript, julia, R, Stata, SAS, and more
工作流系统,多内核支持
Jupyter, iPython 3.x
NodeJS, Babel, Clojurescript
ipykernel >= 4.1
MATLAB >= 2016b
Jupyter
Kotlin 1.1-M04 EAP
Java >= 8
Jupyter 4.3.0
Java + 9 scripting languages
Java
Jupyter
Java 9
Java JDK >= 9
基于新的JShell工具
JupyterLab >= 0.34
SQL
ZeroMQ
MongoDB
Jupyter
Wolfram Engine, i.e., a Wolfram Desktop or Mathematica installation; wolframscriptis optional but recommended
一个用于Wolfram语言(Mathematica)的内核。
我们将在本附录对Jupyter内核的相关操作以及主流的Jupyter核心安装方法进行讲解。
Last updated
Was this helpful?