多元函数偏导与全微分
例:设函数z=z(x,y)由方程z=e2x−3y+2y确定,求3(∂x∂z+∂y∂z)∣x=3,y=2的值
[]:f=Lambda((x, y), exp(2*x-3*y)+2*y)
(3*f(x, y).diff(x)+f(x, y).diff(y)).subs(x, 3).subs(y, 2)
[]:
例:求函数z=cosx2+y2的偏导数∂x∂z, ∂y∂z, ∂x∂y∂2z,全微分dz以及dz∣x=1,y=2
[]:f=Lambda((x, y), cos(sqrt(x\*\*2+y\*\*2)))*
f(x, y).diff(x), f(x, y).diff(y), f(x, y).diff(x, y)*
*[]:*
*[]:float(f(x, y).diff(x).subs(x,1).subs(y, 2)), float(f(x, y).diff(y).subs(x,
1).subs(y, 2))*
[]:
例:设函数f(u)可微,且f′(0)=21,求z=f(4x2−y2)在点(1,2)处的全微分dz∣(1,2)。
[]:f=Function('f')
x, y =symbols('x y')
f(4\*x\*\*2-y\*\*2).diff(x).subs(x, 1).subs(y, 2),
f(4\*x\*\*2-y\*\*2).diff(y).subs(x, 1).subs(y, 2)
[]: 
[]:f=Lambda((x, y), (x\*\*2+y\*\*2)\*exp(-atan(y/x)))
f(x, y).diff(x).simplify(), f(x, y).diff(y).simplify(), f(x, y).diff(x,
y).simplify()
多元函数极值与最值
[]:f=Lambda((x, y), x\*\*2+y\*\*2)
linsolve([f(x, y).diff(x), f(x, y).diff(y)], (x, y))
[]:(f(x, y).diff(x, y))\*\*2-f(x, y).diff(x, x)-f(x, y).diff(y, y)
[]:f(x, y).diff(x, x).subs(x, 0)